Big Data: Definition of Big Data

What exactly is big data?

To really understand big data, it’s helpful to have some historical background. Here’s Gartner’s definition, circa 2001 (which is still the go-to definition): Big data is data that contains greater variety arriving in increasing volumes and with ever-higher velocity. This is known as the three Vs.

Put simply, big data is larger, more complex data sets, especially from new data sources. These data sets are so voluminous that traditional data processing software just can’t manage them. But these massive volumes of data can be used to address business problems you wouldn’t have been able to tackle before.

The Three Vs of Big Data
1Volume
The amount of data matters. With big data, you’ll have to process high volumes of low-density, unstructured data. This can be data of unknown value, such as Twitter data feeds, clickstreams on a webpage or a mobile app, or sensor-enabled equipment. For some organizations, this might be tens of terabytes of data. For others, it may be hundreds of petabytes.

2Velocity
Velocity is the fast rate at which data is received and (perhaps) acted on. Normally, the highest velocity of data streams directly into memory versus being written to disk. Some internet-enabled smart products operate in real time or near real time and will require real-time evaluation and action.

3Variety
Variety refers to the many types of data that are available. Traditional data types were structured and fit neatly in a relational database. With the rise of big data, data comes in new unstructured data types. Unstructured and semistructured data types, such as text, audio, and video require additional preprocessing to derive meaning and support metadata.

The Value—and Truth—of Big Data
The Value—and Truth—of BigData
Two more Vs have emerged over the past few years: value and veracity.

Data has intrinsic value. But it’s of no use until that value is discovered. Equally important: How truthful is your data—and how much can you rely on it?

Today, big data has become capital. Think of some of the world’s biggest tech companies. A large part of the value they offer comes from their data, which they’re constantly analyzing to produce more efficiency and develop new products.

Recent technological breakthroughs have exponentially reduced the cost of data storage and compute, making it easier and less expensive to store more data than ever before. With an increased volume of big data now cheaper and more accessible, you can make more accurate and precise business decisions.

Finding value in big data isn’t only about analyzing it (which is a whole other benefit). It’s an entire discovery process that requires insightful analysts, business users, and executives who ask the right questions, recognize patterns, make informed assumptions, and predict behavior.

But how did we get here?

Download your free white paper:

Updated: February 22, 2019 — 10:44 am

Leave a Reply

Your email address will not be published. Required fields are marked *